
NASA
Technical
Paper
2903

1989

National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
Information Division

A Knowledge-Based
Tool for Multilevel
Decomposition of a
Complex Design Problem

James L. Rogers
Langley Research Center
Hampt on, Virginia

Introduction
Many engineering systems are large and multidisciplinary. Before the design of such complex systems

can begin, much time and money must be invested in determining the possible interactions among the
participating subsystems and their parts. For designs based on existing concepts, like commercial aircraft
design, the subsystems and their interactions are usually well-established. However for designs based
on novel concepts, like large space platforms, the determination of the subsystems, interactions, and
participating disciplines is an important task. Moreover, this task must be repeated as new information
becomes available or as the design specifications change. Determining the subsystems is not an easy,
straightforward process and often important interactions are overlooked. The design manager must know
how to divide the design work among the design teams so that changes in one subsystem will have
predictable effects on other subsystems. The resulting subsystems must be ordered into a hierarchical
structure before the planning documents and milestones of the design project are set. The success of a
design project often depends on the wise choice of design variables, constraints, objective functions, and
the partitioning of these among the design teams. Very few tools are available to aid the design manager
in determining the hierarchical structure of a design problem and assist in making these decisions.

Recently Sobieski (ref. 1) showed the value of multilevel optimization as an approach to solving
complex design problems. But to use this approach, a novel design problem must be decomposed to
identify its hierarchical structure. Steward (ref. 2) developed a project management tool to organize and
display the interactions among tasks in an N x N matrix format using matrix manipulations. Amarel
(ref. 3) recognized the value of using artificial intelligence (AI) techniques to decompose a complex
system into loosely coupled subsystems, handling the subsystem interactions, and combining partial
solutions. Although much work has been done in applying AI tools and techniques to problems in different
engineering disciplines (refs. 4 and 5) , only recently has the application of AI tools begun to spread to
the decomposition of complex design problems (ref. 6). A new tool has been developed to implement a
decomposition scheme suitable for multilevel optimization. It is based on AI techniques, displays the data
in an N x N matrix format, and replaces the matrix manipulations with a knowledge base to provide
much more flexibility.

This paper describes the approach taken by this tool to decompose a novel, complex design problem
into a multilevel structure. It begins with a discussion of the design process modeled as an optimization
problem. It then presents a discussion of the functions of the tool as well as its components. A sample
problem showing how the tool can be applied is used throughout the paper as an example.

A Proposed Model of the Design Process
This tool incorporates only one model out of the many possible models of the design process. Before

beginning a discussion of the tool, it is necessary to lay some groundwork for the basic understanding of
the approach taken for the design process. To help gain that understanding, this section discusses the
elements of the design process, the purpose of the N x N matrix formulation, what is viewed as a desirable
structure for the design process, and the process used to attain that desirable structure.

Elements of the Design Process

The model of the design process presented in this paper has four elements which require discussion:
the design variables, the behavior variables, the constraints, and the objective function. Kirsch (ref. 7)
presents more details about each of these elements.

The design process is described as a set of tasks where the completion of one task may depend on
the completion of other tasks. The input to (and output from) these tasks may be fixed (parameters)
or variable (design or behavior variables) during the design process. The design variables represent a
variety of properties of the system, for example the cross-sectional area of members in a structural design.
Design variables may be discrete or continuous. They are independent variables in the design process
because once they are chosen, the system is completely determined. The behavior of the system can be
represented by a set of behavior variables, for example stresses or displacements. These behavior variables

are determined from the results of intermediate analysis equations and are therefore dependent upon the
value of the design variables.

If a design manager desires to produce a feasible design, that is, one that is adequate in terms of
function and behavior, then certain restrictions must be placed on the range of the design variables. These
restrictions are called design constraints. There are also behavior constraints (for example, maximum
stress) which limit the behavior of the design. In this paper, both design constraints and behavior
constraints are referred to as constraints and both are functions dependent upon the design variables.

If a design manager desires to produce not just a feasible design, but the best feasible design out of
an infinite number of possibilities, then a function is required which is based on the design and behavior
variables that can be used to compare alternative solutions. This function is called the objective function
and may represent the weight, cost, etc., of the design. One of the most important decisions in the design
process is the formulation of the objective function based on the design variables. The purpose of the
design process is to find a minimum for this objective function.

One method for finding the minimum objective function is to model the design process as an
optimization problem. The optimization problem determines the design variables which minimize the
objective function while satisfying the constraints. As suggested by Sobieski (ref. l), to do this effectively
for a large problem may require decomposing the problem into a hierarchy of much smaller subproblems.
This is called multilevel decomposition. Sobieski’s approach suggests that after the problem has been
decomposed, then (1) the subproblems are minimized by minimizing their constraint violations, (2) the
sensitivity derivatives for each subproblem are calculated, (3) a linear extrapolation for each subproblem is
formed, (4) the system is optimized for its objective function and constraints, and (5) steps (1) through
(4) are repeated to attain convergence. Before these steps can begin, a tool is needed for multilevel
decomposition.

I

The N x N Matrix

This model of the design process parallels Steward’s (ref. 2) model of a system. Steward defines the
structure of a system as the way in which some parts of a system affect other parts of the system. These
effects differentiate a system from just a collection of parts. The semantics of the system describe how
and why these effects occur. The structure and the semantics together completely describe the system.
The design manager needs to study and understand both the structure and the semantics of the system.
To gain this understanding, more formal tools are needed, especially as the systems become large and
more complex.

The directed graph is a natural tool for describing the structure of a system. One needs to understand
a few of the basics of graph theory to fully comprehend how the tool works. (Steward presents more details
in ref. 2.) The directed graph consists of nodes and links. In this model for design, a node represents a
task for computing one of the four elements of the design process. A link represents a relationship between
two nodes. Links exiting a node indicate that the node generates some output that affects another node.
Links entering a node indicate that the node requires input from another node before it can function. In
this tool, a link is made between two nodes when the output of one node is part of the input to another
node. A path from node a to node b is a sequence of links. The length of the path is the number of links
in the sequence. A circuit is a path of length greater than one whose first and last nodes are the same,
indicating an iterative process in design.

Another tool for describing the structure of a system is the N x N matrix. The matrix representation
is better than the graph representation when the number of nodes and links is large. The nodes of the
graph are placed on the diagonal of the matrix. The rows and columns of the matrix are used to link
the nodes on the diagonal. An X in column a row b of the matrix corresponds to a link in the graph
(output from node a , input to node b). Feedback links correspond to an X in the N x N , matrix below
the diagonal. If the nodes and links are placed into the matrix without any regard for ordering, then very
little information regarding the desirable structure of the system is available to the design manager (see
fig. 1).

I 2

Desirable Structure

The desired structure of the design process is postulated and this tool provides a method for reaching
that structure. Note that the method is heuristic, has not been proven to converge, and may not have a
unique solution.

Feedback links increase the cost of the solution because they imply that information is required before
it is really available. This, in turn, implies that guesses must be made to initiate the process and that
iterations are necessary. The aim of multilevel decomposition is to order the nodes and the links in such
a way that a number of smaller uncoupled optimization problems can be identified. Therefore, a new tool
is needed that will group and order the nodes of the initial N x N matrix representation of the system
into a structure that limits the number of feedback links and decomposes the nodes into a hierarchical
set. (This is quite different from making a matrix banded.)

One may remark, parenthetically, that limiting the feedback links is not the only means for improving
the design process. The design manager may also want to make changes after examining the trade-offs
between limiting the feedback links and the potential gains from parallel processing. Even though the
natural order of processing for some tasks may be sequential, these tasks can be ordered for parallel
processing by artificially introducing feedback links and therefore iterations. This is done by assuming
that certain pieces of information are available when, in reality, they have not yet been computed. The
examination of these trade-offs is beyond the scope of this paper.

This tool limits the number of feedback links by partitioning the nodes of the system into circuits.
Circuits represent subsystems where each node is simultaneously dependent on all the other nodes within
the same circuit. Feedback links are contained within circuits indicating that an iteration is required.
Circuits are connected to each other only by feedforward links. Since there are no feedback links among
circuits, there is no iteration among circuits and they can be ordered in a multilevel format. Thus a
complex design process can be decomposed into a hierarchical set of tasks.

The process of attaining the desired structure is iterative and interactive. An input file is created
to describe the user’s perception of the relationships among the various elements of the design problem.
Once the tool has been executed and a structure has been proposed, the semantics of the system as well
as the structure of the system must be considered before a final decision is made on choosing the best
decomposition. The design manager looks at the structure in the N x N matrix and makes changes to
improve the structure to meet the known semantics and requirements. Changes may include removing
or adding links, moving nodes within a circuit, or redefining the nodes which make up the system. This
process continues until the design manager reaches the desired structure of the system.

A diagram of the system decomposed by Padula (ref. 8) is shown in figure 2 as an example. The
reference explains the changes made by the design manager to arrive at this particular decomposition.
After the system was decomposed, it was divided among design teams such as structures and controls
as indicated in the figure.

Functions of the Tool
This tool performs several useful functions. These functions are planning, scheduling, displaying the

N x N and dependency matrices, displaying the multilevel organization, and examining the potential
time savings by exploiting parallel processing of the circuits and modules. (The term module is used
interchangeably with the term node from graph theory.) Each of these functions is located within a
subroutine of the main program (fig. 3). The planning function is always done first, followed by the
scheduling function. Calling the other functions depends on the needs of the user. After each function
is completed a file containing the current list of modules is written. This allows the user to restart the
process without having to go back to the start each time.

The functions of the tool are discussed in the remainder of this section, using a generic design problem
as a sample problem. All figures and tables in this paper, except figures 2 and 3, pertain to this particular
problem. The problem has 45 modules. These modules perform one of the following tasks: (1) set
the value of one or more design variables, (2) evaluate one or more constraint functions, (3) calculate

3

intermediate results and behavior variables, and (4) evaluate the objective function. The problem is
defined in terms of the relationships among these various design elements in table I. The dependency
of the objective and constraint functions on the design and behavior variables can be defined explicitly
by mathematical equations. The same is true for defining the dependency of the behavior variables on
the design variables. However, the dependency of the design variables on the functions depends on the
design manager’s view of the problem; therefore engineering judgment is required when determining these
dependencies. The main requirement is that a design variable can only depend on a function if that
function is dependent on the design variable.

Planning

The term planning within the context of this tool means determining which modules contribute to
the solution of the problem. The user begins with a list of modules as shown in table 11. This list should
contain all modules that might be used in the problem. The first step in the planner is to determine
whether or not a module contributes to the problem. This is done by checking the output of each module
against the input requirements of the other modules. If the output of the module is contained in the
input list of at least one other module then that module contributes to the solution of the problem. If a
module is found not to be a contributor then it is removed from the list of modules but saved for possible
use later. If two modules have duplicate output, then either one module is removed or the output is
renamed. The output is renamed when more than one source of the same output is required, for example
two sources with different execution times and accuracy.

In the second step, the planner examines the input lists of all the modules to determine if all input
requirements are satisfied by the output of other modules. Some modules have no input requirements.
These modules are used for initialization purposes by representing external inputs or have their input
requirements satisfied by external inputs when they are used to retrieve the value of one or more design
variables. If an input requirement is not satisfied, then the user must add a new module to the list
interactively or remove the input requirement. If a new module is added, its input requirements are also
checked. If one or more of its input requirements are not met, then the modules removed from the list
earlier are checked first to determine if they satisfy the requirement; if not, then another module must be
added. This step continues until all input requirements are satisfied.

At this point the list of modules contains only those modules contributing to the problem (see table I11
where the modules that have been added to the list, TASKD04 and TASKCO2, are denoted by an asterisk).
All extraneous modules have been removed from the list (see table I1 where the modules that have been
removed from the list, TASKD99, TASKC98, and TASKB50, are denoted by an asterisk).

Scheduling

The scheduling function is the heart of this tool. Within the context of this tool, scheduling means
the ordering of the modules into a meaningful solution sequence while limiting the number of feedback
links among the modules. The scheduling function reorders the modules based on their links. The links
of the initial data for the sample problem are very disorganized and contain a substantial number of
feedback links (fig. 1). Limiting the feedback links among the modules is done by examining the links
and grouping the modules into circuits. This tool also orders the modules within the circuits and orders
the circuits within the design process. While Steward (ref. 2) implements the grouping into circuits with
matrix manipulations, this tool follows the same steps but replaces the matrix manipulations for grouping
by applying rules contained in a knowledge base. Additional rules have been added to control the ordering
of the modules within circuits and the ordering of circuits within the design process.

The list of modules output from the planning function is used as input to the scheduling function. In
step 1, the scheduling function finds all modules with no input requirements and adds them at the top
of the N x N matrix. In addition, these modules are removed from further consideration.

In step 2, the tool determines which modules are tightly coupled. Two modules are tightly coupled
when the output of module a is an input to module b and the output of module b is an input to module a.
These modules are collapsed into a single module. Collapsing two or more modules into a single module

4

considerably speeds up the scheduling function because all the modules that have been collapsed are
removed from further consideration. Only the single module containing lists of the input requirements
and output values of the collapsed modules remains for further consideration. Although the collapsed
modules are no longer considered, their data remain available for later use and display.

In step 3, if no modules remain for consideration go to step 6. If modules remain, then all remaining
modules are examined to see if they have an immediate predecessor among the modules remaining under
consideration. Module a is a predecessor of module b if there is a path from module a to module b, and
module a is an immediate predecessor if there is a link directly from module a to module b. If every
remaining module has an immediate predecessor, then go to step 4, otherwise go to step 5.

To begin step 4, one of the remaining modules is chosen as a starting point. An immediate predecessor
module is chosen, then an immediate predecessor module of this module, etc. This continues until some
module is encountered a second time. At this point a circuit has been found. One module in the circuit is
chosen and all the other modules in the circuit are collapsed into that module, which then represents all
modules within that circuit. The representative module has a link to or from another module if and only
if some module in the circuit had a link to or from the other module. All modules and their links in the
circuit other than the representative module are removed from further consideration. Step 3 is repeated.

To reach step 5, a module exists which does not have an immediate predecessor among the remaining
modules. This module along with all the links entering into it or exiting from it are removed from
consideration. As modules are removed from consideration they are added to the N x N matrix, starting
from the top left-hand corner moving down the diagonal, thus the modules and circuits are properly
sorted. This implies that any modules within a circuit added to the N x N matrix may require input
from modules above them. Modules already a part of the N x N matrix will not require the output
values of any modules just added, therefore there are no feedback links among the circuits. The modules
are given a new number as they are reordered into circuits and added to the N x N matrix. Step 3 is
repeated.

At step 6 no module remains to be tested for an immediate predecessor, and this part of the scheduling
is complete. All the modules have been given new numbers and a circuit number has been added to each
module in the list. The only feedback links exist within circuits. There are no feedback links from one
circuit to another.

One of the advantages of using a knowledge-based tool over matrix manipulations is the ease with
which new rules can be added. This gives the knowledge-based tool more flexibility. For step 7, more
rules have been added to the scheduling function that were not in Steward’s (ref. 2) procedure. These
new rules order the modules within the circuit and were developed in conjunction with Padula’s design
problem (ref. 8). The ordering is done based on the weight assigned to the modules. This step reorders the
modules within a circuit by moving the modules with the highest weight to the beginning of the circuit.
The modules with ever-decreasing weights are moved to be below but near the top priority modules to
which they are linked. Using this method, tasks can begin as soon as possible but the modules with the
highest weights are given priority. (In the sample problem, the objective function module has a weight
of 4, the design variable modules have a weight of 3, the behavior variable modules have a weight of 2,
and the constraint modules have a weight of 1.) Once this step is completed the design manager can
examine the N x N matrix display (see fig. 4) and use the graphics interface to manipulate the modules
and links to meet the requirements and semantics of the problem.

Multilevel Organization

The circuits and their links can also be displayed in an N x N matrix form (fig. 5) . By examining the
circuits, it is apparent that there are no feedback links among the circuits, therefore there is no iteration
among the circuits. The only iterations are contained within the circuits. Thus, once the circuits have
been found during the scheduling function, it is simple to achieve a multilevel organization of the problem.
The knowledge base scans a list of circuits to determine the multilevel hierarchy. As circuits which have
their input requirements satisfied are found, they are placed on a level. A circuit is placed on the level
below the lowest level containing a circuit which generates input for the circuit being placed (fig. 6).

5

Dependency Matrix

Another function of the tool is to build the dependency matrix of the problem. The usefulness of
this matrix is described by Barthelemy (ref. 9). It is an ordered table that identifies the functional
dependence between constraints and independent design variables. Behavior variables can be evaluated
using design variables, therefore each behavior variable can be replaced by a list of independent design
variables. Each constraint is examined to determine its dependency on design and behavior variables.
Whenever a constraint depends on a behavior variable, the dependency of that behavior variable on the
independent design variables is substituted. For example, if behavior variable 1 (BVO1) is dependent on
design variables 2 and 3 (DV02 and DV03) and constraint 4 (G004) is dependent on design variable 5
(DV05) and behavior variable 1 (BVO1) then

BVOl = f (DV02, DV03)

GO04 = f (DV05, BVO1)

where = f (...) means is a function of and GO04 is indirectly dependent on BVO1.
After substitution

GO04 = f (DV05, DV02, DV03)

where GO04 is directly dependent on DV05, DV02, and DV03. This produces a rectangular matrix with the
constraints listed along the rows and the independent variables along the columns (fig. 7). An X marks
the dependency. Building the dependency matrix after the planning and scheduling functions reveals
dependency patterns that may prove advantageous when developing multilevel optimization algorithms.
The module numbers in the figure reflect the renumbering after scheduling.

Exploiting Parallel Processing

Each module in the sample problem was assigned an arbitrary execution time requirement. If the
modules were executed sequentially, 1841 units of time would be required. But suppose the design
project has a time constraint placed on it, causing the design manager to examine time savings options.
One option would be to execute some of the modules or circuits in parallel. This tool allows the user
to see two methods of exploiting parallel processing. The first method shows the benefits of exploiting
parallelism within the circuits, while the second method shows the benefits from executing the circuits in
parallel.

To determine the savings from executing modules within circuits in parallel, the problem is first broken
down into circuits. Then the modules within the circuits are examined to see how they might be executed
in parallel. Modules can begin execution if modules that satisfy their input requirements have completed
execution. A list of the modules executing in parallel is kept along with their time requirements. The
maximum number of modules executing in parallel at any one time indicates the number of processors
that will be required. The tool lists the amount of time that can be saved by executing certain modules
in parallel and the number of processors that would be needed.

A more substantial time savings can probably be realized by executing the circuits on the same level
in parallel. The maximum time required to complete execution at a level is determined by finding the
circuit requiring the maximum time at that level. The level times are totaled and subtracted from the
total sequential time to determine the time that could be saved by executing the circuits in parallel. The
number of processors that will be required is determined by the maximum number of circuits at any one
level. The tool lists the amount of time that can be saved by executing the circuits in each level in parallel
and the number of processors that would be needed.

If each circuit corresponds to an optimization subproblem in a multilevel decomposition, then time
estimates for each circuit depend on the number of iterations allowed by the optimizer. The number of
iterations is unknown a priori. It is felt, however, that an arbitrary number of iterations may be assumed.
As shown by Padula and Sobieski (ref. lo), the number of iterations may be kept low without significantly

6

impeding the convergence of the whole process. To demonstrate the potential time savings from using
parallel execution, the number of iterations in the sample problem was assumed to be one. Executing the
modules in the circuits in parallel would save 128 units of time out of 1841, and would require 4 processors,
By executing the circuits in parallel, a substantial time savings of 1009 time units out of 1841 could be
realized. The times for each circuit are shown in table IV with the times for each level (the maximum
circuit time within that level) indicated by an asterisk. This process would also require four processors.

Components of the Tool
This section describes the workings of the components of the tool. The user begins the design of a

complex system that is divisible into modules by determining the outputs that contribute to the objective
function and constraint functions of the system. The user divides the system into these modules and
determines the input and output of each module, creating a data file for the main program of the tool.
The main program is written entirely in FORTRAN. The other components-DI-3000 (ref. 11) for the
graphics and CLIPS (C Language Production System, ref. 12) for the inference engine-were added by
linking existing software to the main program. The rules are contained on seven different files which are
loaded into the knowledge base as needed. A diagram of the tool is shown in figure 3.

Input

The data file contains the number of modules and a list of the modules whose output values contribute

The format of a single line in the list is
to the objective function of the system. The input of the sample problem is shown in table 11.

module number name weight time output unknown input-list

where the items in bold print are not to be changed by the user, and the items to be changed by the user
are described below:

number

name

weight

time

output

input-list

The Main Program

The main program controls the execution of the tool through a system of menus. Through the
main menu, the user has the choice to plan, schedule, display the N x N matrix, display the multilevel
organization, examine parallelism, or examine the dependency matrix. Each of these areas has been
discussed in detail in the section on functions of the system. Depending upon the choice from the menu,
the main program calls a subroutine which performs the desired task. Each subroutine reads a file of
rules, reads the necessary data, asserts facts into the knowledge base, and executes the CLIPS inference
engine. Data are returned from the knowledge base to a single subroutine, KBANS1, where they are
stored in a common block for later use. All the calls to the DI-3000 graphics package are made from
a single subroutine, GRFXEC, making it simple for the user to replace DI-3000 with another graphics
package.

the number of the module

the name of the module

a number defining the element of the design process

an estimated execution time requirement for the module

the output value created by the module

a list of all the required input values

The Graphics System

The DI-3000 graphics package (ref. 11) is a device independent graphics system and is the primary
graphics package used at NASA Langley Research Center. Since the graphics calls are very simple

7

operations such as moving the cursor, drawing lines and circles, text, and receiving data from the mouse
(or arrow keys), it should pose no problem to switch to a different graphics package. The graphics window
is divided into two parts. One is a dialogue area for the user to interface with the tool, and the other is
a graphics display.

The data can be displayed on a Tektronix 4014 window of the DEC VaxStation or on a DEC VT240
color monitor. The main display is the N x N matrix display of the modules, their links, and the circuits.
The modules are displayed as boxes down the diagonal. On the VT240 color monitor, each module is given
a color according to its weight. This makes it much easier to see the relationships among the different
types of modules and also helps in manipulating the modules within the circuits. The display of the links
in the N x N matrix is slightly different from Steward’s (ref. 2). The links are lines connected horizontally
to a box to indicate an output from that module and vertically to indicate an input into that module. A
circle on the links indicates the interface between two modules. Circuits are larger boxes containing the
smaller boxes for modules. The user can display 25 or 50 modules at a time. A menu is used to make
a selection of what data are to be displayed. The user can display the links, the circuits, or both the
circuits and the links. In addition, the user can move modules around in the matrix, list the modules,
or examine module data in detail. The user can also use cross-hairs guided by a mouse (or arrow keys)
to display the interface data between two modules. Since the display is static, it is possible that not all
modules can fit onto a single display. To allow the user the capability of seeing all the modules, the user
can specify which module is to be at the top of the display. The knowledge base scans the list of modules
and returns the appropriate data for display.

The Knowledge-Based System

The CLIPS system (ref. 12) is a knowledge-based system developed at NASA Johnson Space Center.
It is written in C, performs forward chaining based on the Rete pattern-matching algorithm, and has a
FORTRAN interface. There are three main parts to a knowledge-based system: the facts, the rules, and
the inference engine.

Facts are the basic form of data in the knowledge base and are contained in a facts list. A fact is
composed of several fields with each field being separated by a space. A field can contain a number, a
word, or a string. Facts are asserted into the facts list before execution by the deflucts construct or by
an assert command in the calling program, or during execution as the action caused by executing a rule.
An example of a fact about a module is

(module ?no ?name ?wt ?tm ?out ?stat $?inlist)

The knowledge base also contains rules which are defined by the defiule construct. A rule states
that specific actions, the right-hand side (RHS), are to be taken if certain conditions, the left-hand side
(LHS), are met. The symbol => separates the LHS from the RHS. If and only if all conditions on the
LHS are satisfied, then the actions on the RHS will be performed sequentially. Each rule must contain at
least one condition and one action; however, there is no upper limit on either the number of conditions
or the number of actions. A rule executes based on the existence or nonexistence of facts in the facts list.
Currently there are 156 rules divided among 7 files. The example below is a rule for determining that a
link exists between two modules.

(defrule links
I

; names the links rule

; list for module 1

; list for module 2

; test for membership in input list

; return answer to main piogram

(module ?no1 ?name1 ?wtl ? tml ?out1 ?stat1 $?inlistl)

(module ?no2 ?name2 ?wt2 ?tm2 ?out2 ?stat2 $?inlist2)

(test (member ?out1 $?inlist2)) =>
(KBANS1 LINK ?no1 ?no2))

This is interpreted to read as follows: If there are two different modules where the output of one is
an input into the other, then a link exists between those two modules. Any words following a “;” are

I 8

a comment. The parameters preceded by a "?" are single-field variables ("$?" is a multifield variable)
and can take on any values for matching purposes. The action, based upon the three conditions being
met, is to return to the main program via the KBANSl parameter the fact that a link exists between
module numbers ?no1 and ?no2. The LINK parameter shows where to store the numbers in the KBANSl
subroutine. If, for example, module number 7 has the output parameter DV07, and module number 13
has the input parameter list DVOl DV07 DV20, then the test would succeed and the module numbers 7
and 13 would be returned to the KBANSl subroutine to indicate a link exists between the two modules.

The inference engine in CLIPS applies the knowledge (rules) to the data (facts). Pattern matching
occurs on the LHS for the fixed terms and the single- and multiple-field variables. The basic execution
cycle begins by examining the knowledge base to determine if the conditions of any rules have been met.
All rules with currently met conditions are pushed onto the agenda which is essentially a push down
stack. Once the agenda is complete, the top rule is selected and its RHS is executed. As a result of the
action(s) of the rule execution, new rules may be placed on the agenda and rules already on the agenda
may be removed. This cycle is repeated until all rules that can execute have done so. The main program
passes control to CLIPS for execution of the inference engine and CLIPS passes control back to the main
program after all the rules have executed.

Concluding Remarks

A tool using AI techniques has been developed for decomposing complex design problems into a suitable
multilevel structure based on the multilevel optimization approach. This tool requires an investment of
time to generate and refine the input for each design module. This investment may not be justified for a
small, well-understood problem, but should save a significant amount of money and time in organizing a
new design problem where the ordering of the modules is still unknown. The decomposition of a complex
design system into subsystems requires an interaction with the judgment of the design manager. This
tool can aid the design manager in making decomposition decisions early in the design cycle.

This tool provides help to the design manager by reordering and grouping the modules based on the
links (interactions) among the modules. The modules are grouped into circuits (the subsystems) and
displayed in an N x N matrix format. The feedback links, which indicate an iterative process, are limited
and restricted to be within a circuit. Since there are no feedback links among the circuits, the circuits can
be displayed in a multilevel format. Thus, a large amount of information is reduced to one or two displays.
The displays are stored and can be easily retrieved and modified. The design manager and leaders of the
design teams are given a visual display of the design problem and the intricate interactions among the
different modules so that they can see how a change in one subsystem will effect other subsystems. It
also helps reduce the possibility of overlooking important links.

The tool gives the design manager the capability of examining the potential savings in time by executing
some of the modules in a circuit in parallel. A substantial time savings can be obtained if circuits on the
same level of the multilevel structure are executed in parallel. The time savings as well as the number of
processors that will be required are determined. In addition to decomposing the system into subsystems,
the tool examines the dependencies of the problem and creates a dependency matrix. This matrix shows
the relationship among the independent design variables and the dependent objective and constraint
functions.

Since the tool is based on AI knowledge base techniques, it has proven to be very flexible in adding new
capabilities. Given its current capabilities, this knowledge-based tool can provide the design manager with
a great deal of insight in decomposing large, complex design systems into more manageable subsystems,
thereby saving considerable time and money in the total design process.

NASA Langley Research Center
Hampton, VA 23665-5225
March 28, 1989

9

References
1. Sobieszczanski-Sobieski, Jaroslaw: A Linear Decomposition Method for Large Optimization Problems-Blueprint for

Development. NASA TM-83248, 1982.
2. Steward, Donald V.: Systems Analysis and Management: Structure, Strategy and Design. Petrocelli Books, Inc., c.1981.
3. Amarel, S.: Artificial Intelligence and Design: Opportunities, Challenges, Research Problems and Directions. LSCR-

TR-113, Dep. of Computer Science, Rutgers Univ., July 1988.
4. Sriram, D.: Bibliography-A Bibliography on Knowledge-Based Expert Systems in Engineering. ACM SZGART Newsl.,

no. 89, July 1984, pp. 32-40.
5. Sriram, D.; and Joobbani, R., eds.: Special Issue-AI in Engineering. ACM SIGART Newsl., no. 92, Apr. 1985,

6. Rogan, J. E.; and Kolb, M. A.: Application of Decomposition Techniques to the Preliminary Design of a Bansport
Aircraft. NASA CR-178239, 1987.

7. Kirsch, Uri: Optimum Structural Design-Concepts, Methods, and Applications. McGraw-Hill Book Co., c.1981.
8. Padula, Sharon L.; Sandridge, Chris A.; Haftka, Raphael T.; and Walsh, Joanne L.: Demonstration of Decomposition

and Optimization in the Design and Experimental Space Systems. Recent Advances in Multidisciplinary Analysis and
Optimization, Jean-Franqois M. Barthelemy, ed., NASA CP-3031, Part 1, 1989, pp. 297-316.

9. Barthelemy, J-F M.: Engineering Applications of Heuristic Multilevel Optimization Methods. NASA TM-101504, 1988.
10. Padula, S. L.; and Sobieszczanski-Sobieski, J.: A Computer Simulator for Development of Engineering System Design

Methodologies. International Conference on Engineering Design-ICED 87, W . E. Eder, ed., American SOC. of
Mechanical Engineers, 1987, pp. 147-161.

pp. 38-127.

11. DI-9000 User’s Guide. Central Scientific Computing Complex Document G-5, Precision Visuals, Inc., c.1984.
12. Riley, Gary; Culbert, Chris; Savely, Robert T.; and Lopez, Frank: CLIPS: An Expert System Tool for Delivery and

Training. Third Conference on Artificial Intelligence for Space Applications-Part I, J. S . Denton, M. S. Freeman, and
M. Vereen, compilers, NASA CP-2492, 1987, pp. 53-57.

10

Table I. Relationships Among the Design Elements of the Sample Problem

[The notation =f(...) means is a function of]

Design variables

1. DVOl=f(G011, G012, G013)

2. DV02=f(GO11, G012, G013)

3. DVOS=f(GOll, G012, G013)

4. DV04=f(G003)

5. DV05=f(G003)

6. DV06=f(G014, G015)

7. DV07=f(G014, G015)

8. DV08=f(G014, G015)

9. DV09=f(G004, G005)

10. DVlO=f(G004, G005)

11. DVll=f(G004, G005)

12. DV12=f(G016, G017)

13. DV13=f(G016, G017)

14. DV14=f(G016, G017)

15. DV15=f(G016, G017)

16. DV16=f(G006, G007, G008)

17. DV17=f(G006, G007, G008)

18. DV18=f(G006, G007, G008)

19. DV19=f(G009, G010)
20. DV20=f(G009, G010)

21. DV21=f(G001, G002)

22. DV22=f(G001, G002)

23. DV23=f(OB01)

24. DV99=f(G001, G003, G030)

Behavior variables

1. BVOl=f(DV12, DV13, DV14, DV15)

2. BV02=f(DV21, DV22)

3. BVOS=f(DVOl, DV02, DV03)

4. BV04=f(DVO9, DV10, DV11)

5. BV50=f(DVO1, DV02, DV03)

Constraint functions

1. G001=f(DV16, DV17, BV02)

2. G002=f(DV18, BV02)

3. G003=f(DV01, DV02, DV03, DV04, DV05)

4. G004=f(DV06, DV10, DV11, BV04)

5. G005=f(DV07, DV08, DV10, DV11, BV04)

6. G006=f(DV12, DV13, DV16, DV17, DV18)

7. G007=f(DV12, DV13, DV16, DV17, DV18)

8. G008=f(DV12, DV13, DV16, DV17, DVl8)

9. G009=f(DV14, DV19, DV20)

10. GOlO=f(DV15, DV19, DV20)

11. GOll=f(DVOl, DV02, DV03)

12. G012=f(DV23, BV03)

13. G013=f(DV23, BV03)

14. G014=f(DV06, DV07, DV08, DV23

15. G015=f(DV06, DV07, DV08, DV23

16. G016=f(DV23, BVO1)

17. G017=f(DV23, BVOl)

18. G098=f(DV18, DV26, DV32)

Objective function

1. OBOl=f(DV23)

11

46

module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module*
module
module
module
module*
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module*

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Table 11. Original Input Data

[Italicized column heads are not part of the input file]

Name

TASKC10
TASKD07
TASKD17
TASKD23
TASKD20
TASKD15
TASKBO3
TASKC14
TASKC07
TASKC15
TASKD21
TASKC04
TASKC 17
TASKCOG
TASKC03
TASKCl3
TASKB04
TASKD99
TASKDll
TASKD02
TASKCOl
TASKC98
TASKC16
TASKD13
TASKDO5
TASKD14
TASKC08
TASKB02
TASKDlO
TASKCO9
TASKCll
TASKD16
TASKDO6
TASKD19
TASKD03
TASKDO9
TASKD12
TASKC12
TASKD22
TASKD18
TASKDOl
TASKD08
TASKFOl
TASKBO 1
TASKCO5
TASKB50

W t . T m .

1
3
3
3
3
3
2
1
1
1
3
1
1
1
1
1
2
3
3
3
1
1
1
3
3
3
1
2
3
1
1
3
3
3
3
3
3
1
3
3
3
3
4
2
1
2

27
12
12
81
17
23
53
18
18
62
12
15
35
23
24
17
70
84
22
12
35
10
55
15
53
74
53
17
42
98
14
67
68
74
46
57
25
19
57
84
40
93
44
62
12
39

o u t .

GOlO
DV07
DV17
DV23
DV20
DV15
BV03
GO14
GO07
GO15
DV21
GO04
GO17
GO06
GO03
GO13
BV04
DV99
DVll
DV02
GOOl
GO98
GO16
DV13
DV05
DV14
GO08
BV02
DVlO
GOO9
GOll
DV16
DV06
DV19
DV03
DV09
DV12
GO12
DV22
DV18
DVO 1
DV08
OBOl
BVOl
GO05
BV50

Status

unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown

Input

DV15 DV19 DV20
GO14 GO15
GO06 GO07 GO08
OBOl
GOO9 GOlO
GO16 GO17
DVOl DV02 DV03
DV06 DV07 DV08 DV23
DV12 DV13 DV16 DV17 DV18
DV06 DV07 DV08 DV23
GOOl GO02
DV06 DVlO DVll BV04
DV23 BVOl
DV12 DV13 DV16 DV17 DV18
DVOl DV02 DV03 DV04 DV05
DV23 BV03
DV09 DVlO DVl l
GOOl GO03 GO30
GO04 GO05
GOll GO12 GO13
DV16 DV17 BV02
DV18 DV26 DV32
DV23 BVOl
GO16 GO17
GO03
GO16 GO17
DV12 DV13 DV16 DV17 DV18
DV21 DV22
GO04 GO05
DV14 DV19 DV20
DVOl DV02 DV03
GO06 GO07 GO08
GO14 GO15
GOO9 GOlO
GOll GO12 GO13
GO04 GO05
GO16 GO17
DV23 BV03
GOOl GO02
GO06 GO07 GO08
GOll GO12 GO13
GO14 GO15
DV23
DV12 DV13 DV14 DV15
DV07 DV08 DVlO DVll BV04
DVOl DV02 DV03

*Indicates modules not contributing to solution which are removed during planning function.

12

Table 111. Modules After Planning

[Italicized column heads are not part of the input file]

I

45 N 0. Name Wt . T m . Out. Status Input

module
module*
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module
module*

25
45
35
33
34
17
6

37
21
38
36
32
31
30
29
28
27
24
23
20
19
15
14
13
10
9
8
7
5
4
2

26
16
12
1

11
3

22
18
39
40
41
42
43
44

TASKDO5
TASKD04
TASKDOS
TASKDO6
TASKD19
TASKB04
TASKD15
TASKDl2
TASKCOl
TASKC12
TASKDOS
TASKD16
TASKCll
TASKCO9
TASKDlO
TASKBO2
TASKC08
TASKDl3
TASKC16
TASKD02
TASKDll
TASKCO3
TASKCOG
TASKC17
TASKC15
TASKC07
TASKC14
TASKBO3
TASKDBO
TASKD23
TASKD07
TASKD14
TASKCl3
TASKC04
TASKClO
TASKD21
TASKD17
TASKC05
TASKBOl
TASKD22
TASKD18
TASKDOl
TASKD08
TASKFOl
TASKCO2

3 53
3 44
3 46
3 68
3 74
2 70
3 23
3 25
1 35
1 19
3 57
3 67
1 14
1 98
3 42
2 17
1 53
3 15
1 55
3 12
3 22
1 24
1 23
1 35
1 62
1 18
1 18
2 53
3 17
3 81
3 12
3 74
1 17
1 15
1 27
3 12
3 12
1 12
2 62
3 57
3 84
3 40
3 93
4 44
1 40

DV05
DV04
DV03
DV06
DV19
BV04
DV15
DV12
GOOl
GO12
DV09
DV16
GOll
GOO9
DVlO
BV02
GO08
DV13
GO16
DV02
DVll
GO03
GO06
GO17
GO15
GO07
GO14
BV03
DV20
DV23
DV07
DV14
GO13
GO04
GOlO
DV21
DV17
GO05
BVOl
DV22
DV18
DVOl
DV08
OBOl
GO02

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

GO03
GO03
GOll GO12 GO13
GO14 GO15
GOO9 GOlO
DV09 DVlO DVll
GO16 GO17
GO16 GO17
DV16 DV17 BV02
DV23 BV03
GO04 GO05
GO06 GO07 GO08
DVOl DV02 DV03
DV14 DV19 DV20
GO04 GO05
DV21 DV22
DV12 DV13 DV16 DV17 DV18
GO16 GO17
DV23 BVOl
GOll GO12 GO13
GO04 GO05
DVOl DV02 DV03 DV04 DV05
DV12 DV13 DV16 DV17 DV18
DV23 BVOl
DV06 DV07 DV08 DV23
DV12 DV13 DV16 DV17 DV18
DV06 DV07 DV08 DV23
DVOl DV02 DV03
GOO9 GOlO
OBOl
GO14 GO15
GO16 GO17
DV23 BV03
DV06 DVlO DVll BV04
DV15 DV19 DV20
GOOl GO02
GO06 GO07 GO08
DV07 DV08 DVlO DVll BV04
DV12 DV13 DV14 DV15
GOOl GO02
GO06 GO07 GO08
GOll GO12 GO13
GO14 GO15
DV23
DV18 BV02

*Indicates modules added during planning function.

13

Table IV. Circuit and Level Times for Parallel Execution

1
2
3
4
5
6
7
8
9

I Circuit I Level
1
2
3
2
3
2
3
4
3

1
2
3
4
5
6
7
8
9

1
2
3
2
3
2
3
4
3

Time
*125
201
121
253
218

*289
*257
* 161
216

*Indicates the maximum time for each level.

14

1 - I I I - I

1

Figure 1. Unorganized data from original input.

External
input

Actuator!

Sensors

Structures -b

Dynamics -b

Controls -bE

Figure 2. Desired structure of circuits and links. (Padula problem, ref. 8.)

16

~~

Figure 3. Diagram of the design tool.

17

Figure 4. Modules and circuits after scheduling.

18

Level 1

Level 2

Level 3

Figure 5. N x N display of circuits.

I l l

Fl Level 4

Figure 6. Multilevel display of circuits.

19

Module I 2 3 4 5 1011 1314151819202425262731323337384243

7 I x x x x
8 I x x x x
9 I x x x

12 I x x x x x

16 I X
17 I X

x x x
x x x

22 I
23 I

x x x x x
X x x x

29 I X
30 I X

x x x x
x x x x

34 I
35 I
36 I

X
X
X

x x x x
x x x x
x x x x

40 I
41 I

X x x
x x x x

44 I
45 I

X
X

x x
x x

Figure 7. Dependency matrix.

20

Report Documentation Page

1. Report No.
NASA TP-2903

2. Government Accession No. 3. Recipient's Catalog No.

7. Author(s)
James L. Rogers

1. Title and Subtitle

A Knowledge-Based Tool for Multilevel Decomposition of a
Complex Design Problem

8. Performing Organization Report No.

L-16557

5. Report Date

May 1989
6. Performing Organization Code

10. Work Unit No. 3. Performing organization Name and Address

12. Sponsoring Agency Name and Address

Washington, DC 20546-0001
National Aeronautics and Space Administration

- -
NASA Langley Research Center

13. Type of Report and Period Covered

Technical Paper
14. Sponsoring Agency Code

506-43-41-01

.9. Security Classif. (of this report)
Unclassified

Hampton, VA 23665-5225 11. Contract or Grant No.

20. Security Classif. (of I
Unclassified

lis page)

15. Supplementary Notes

21. No. of Pages 22. Price
21 A03

16. Abstract
Many engineering systems are large and multidisciplinary. For designs based on novel concepts,
like large space platforms, the determination of the subsystems, interactions, and participating
disciplines is an important task. Determining the subsystems is not an easy, straightforward
process and often important interactions are overlooked. The design manager must know how to
divide the design work among the design teams so that changes in one subsystem will have
predictable effects on other subsystems. The resulting subsystems must be ordered into a
hierarchical structure before the planning documents and milestones of the design project are set.
Very few tools are available to aid the design manager in determining the hierarchical structure
of a design problem and assist in making these decisions. Although much work has been done
in applying artificial intelligence (AI) tools and techniques to problems in different engineering
disciplines, only recently has the application of these tools begun to spread to the decomposition
of complex design problems. A new tool based on AI techniques has been developed to implement
a decomposition scheme suitable for multilevel optimization and to display the data in an N x N
matrix format.

.7. Key Words (Suggested by Authors(s))
Knowledge-based system
Multilevel decomposition
Planning and scheduling
Design process

18. Distribution Statement
Unclassified-Unlimited

j

'ASA FORM 1626 OCT 86 NASA-Lnngley. 1989

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

